Name:
Assessment Criteria: Classify quadrilaterals by their geometric properties

1. What is the difference between a rectangle and an oblong?
\qquad
\qquad
\qquad
2. Can a trapezium have three right angles? Explain your answer.
3. In each of the diagrams below, write the name of a quadrilateral that could be placed in each section:

	Diagonals bisect each other	Diagonals do not bisect each other
Can have no right angles		
Cannot have no right angles		

	Diagonals are perpendicular	Diagonals are not perpendicular
Has rotational symmetry		
Does not have rotational symmetry		

Overall, I think my success level is:
$\stackrel{\text { Low }}{\circ} \mathrm{O}$ High

Q	QUADRILATERALS	()	(2)
	I know the names of all the special types of quadrilaterals		
	I know the properties (equal and/ or parallel sides, equal angles, right angles, diagonals bisected and/ or at right angles, reflection and rotation symmetry) of the special quadrilaterals		
	I can identify special cases of special types of quadrilaterals (e.g. a rhombus is a special case of a parallelogram)		
	I can use the properties of quadrilaterals to solve problems		
	I can present a concise, reasoned argument, using symbols, diagrams, graphs and related explanatory texts		
	I can use logical argument to establish the truth of a statement		
	ed to practise ...		

