Equivalent fractions (1)

Shade the bar models to represent the equivalent fractions.

$\frac{1}{2}=\frac{3}{6}$

b) | $\frac{1}{2}$ | $\frac{1}{2}$ |
| :---: | :---: |

| $\frac{1}{10}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\frac{1}{2}=\frac{5}{10}$

c) \begin{tabular}{|c|c|c|c|c|}
\hline$\frac{1}{5}$ \& $\frac{1}{5}$ \& $\frac{1}{5}$ \& $\frac{1}{5}$ \& $\frac{1}{5}$ \\
\hline

\hline$\frac{1}{10}$ \& $\frac{1}{10}$ \\
\hline
\end{tabular}

$\frac{4}{5}=\frac{8}{10}$

d) \begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline$\frac{1}{8}$ \& $\frac{1}{8}$ \\
\hline

\hline$\frac{1}{4}$ \& $\frac{1}{4}$ \& $\frac{1}{4}$ \& $\frac{1}{4}$ \\
\hline
\end{tabular}

2)

Use the fraction wall to complete the equivalent fractions.

$\frac{1}{2}$			$\frac{1}{2}$				
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{8}$							

a) $\frac{1}{2}=\frac{\square}{4}$
b) $\frac{1}{2}=\frac{\square}{8}$
c) $\frac{2}{4}=\frac{4}{\square}$
d) $\frac{2}{8}=\frac{\square}{4}$
e) $\frac{\square}{8}=\frac{3}{4}$
f) $\frac{2}{2}=\frac{\square}{4}=\frac{\square}{8}$
(3)
a) Label the fractions on the fraction wall.

b) Use the fraction wall to complete the equivalent fractions.

$\frac{3}{\square}=\frac{6}{\square}=\frac{9}{\square}=1$
(3)

Here is a fraction wall.

$\frac{1}{2}$			$\frac{1}{2}$				
$\frac{1}{3}$		$\frac{1}{3}$			$\frac{1}{3}$		
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$			$\frac{1}{5}$	
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$		

Is each statement true or false? Tick your answers.
a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$

True False
b) $\frac{2}{3}$ is equivalent to $\frac{3}{4}$
c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$
d) $\frac{2}{3}$ is equivalent to $\frac{4}{5}$
\square
e) $\frac{2}{3}$ is equivalent to $\frac{4}{6}$
f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements. Ask a partner to say if they are true or false.

5 Are the stotements always, sometimes or never true? Circle your answer.
Draw a diagram to support your answer.
a) The greater the numerator, the greater the fraction.

b) Fractions equivalent to one half have even numerators.

c) If a fraction is equivalent to one half, the denominator will be double the numerator.
\qquad sometimes never

Equivalent fractions（1）

I Shade the bar models to represent the equivalent fractions．

$7 \frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

2
Use the fraction wall to complete the equivalent fractions．

$\frac{1}{2}$				$\frac{1}{2}$				
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		
$\frac{1}{8}$								

a）$\frac{1}{2}=\frac{2}{4}$
c）$\frac{2}{4}=\frac{4}{8}$
e）$\frac{6}{8}=\frac{3}{4}$
b）$\frac{1}{2}=\frac{4}{8}$
d）$\frac{2}{8}=\frac{\square}{4}$
f）$\frac{2}{2}=\frac{4}{4}=\frac{8}{8}$
a）Label the fractions on the fraction wall．

| 1 | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{3}$ | | $\frac{1}{3}$ | | | $\frac{1}{3}$ | | | |
| $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | | $\frac{1}{6}$ | | |
| $\frac{1}{9}$ |

b）Use the fraction wall to complete the equivalent fractions．

$$
\begin{aligned}
& \frac{1}{3}=\frac{\boxed{2}}{6}=\frac{3}{\boxed{9}}=\frac{4}{3}=\frac{4}{9} \\
& \text { 亩面面" }
\end{aligned}
$$Here is a fraction wall.

$\frac{1}{2}$			$\frac{1}{2}$			
$\frac{1}{3}$		$\frac{1}{3}$			$\frac{1}{3}$	
$\frac{1}{4}$	$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$		$\frac{1}{5}$	
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	

Is each statement true or false? Tick your answers.
a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$
b) $\frac{2}{3}$ is equivalent to $\frac{3}{4}$
c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$
d) $\frac{2}{3}$ is equivalent to $\frac{4}{5}$ is equivalent to $\frac{4}{6}$
f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements.
Ask a partner to say if they are true or false.Are the statements always, sometimes or never true? Circle your answer.
Draw a diagram to support your answer.
a) The greater the numerator, the greater the fraction

b) Fractions equivalent to one half have even numerators.

c) If a fraction is equivalent to one half, the denominator will be double the numerator.

