Answers

Monday

Green Part 1:

```
1a. 9km =900m corrected to 9km =
9,000m
3,000g= 30kg corrected to 3,000gg=3kg
or 30,000g = 30kg.
2a. False, True, True, True.
\(3 \mathrm{a} .3 \mathrm{~kg}<4,000 \mathrm{~g}, 3,000>2 \mathrm{~kg}\),
\(80 \mathrm{~km}=80,000 \mathrm{~m}, 4,000 \mathrm{~m}>2 \mathrm{~km}\)
4a. \(8,000 \mathrm{~m}\)
```


Part 2 and Extension:

$1 \mathrm{a} .3,000 \mathrm{~g}, 1,000 \mathrm{~g}$
2a. Various possible answers, for example:
$60 \mathrm{~kg}>7,000 \mathrm{~g}, 7,000 \mathrm{~g}>2,000 \mathrm{~g}$.
$2,000 \mathrm{~g}<60 \mathrm{~kg}$
3 a . Beth is correct. 2 packs of strawberries weigh $1,000 \mathrm{~g} .1,000 \mathrm{~g}$ is equivalent to 1 kg . 1 kg of strawberries cost $£ 4.00$.

1b. $4,000 \mathrm{~m}=40 \mathrm{~km}$ corrected to $4,000 \mathrm{~m}=$ 4 km or $40,000 \mathrm{~m}=40 \mathrm{~km}$.
$80 \mathrm{~kg}=8,000 \mathrm{~g}$ corrected to $80 \mathrm{~kg}=80,000 \mathrm{~g}$ or $8 \mathrm{~kg}=8,000 \mathrm{~g}$.
2b. False, False, True, False
$3 \mathrm{~b} .4 \mathrm{~kg}>2,000 \mathrm{~g}, 90 \mathrm{~kg}=90,000 \mathrm{~g}$,
$8,000 \mathrm{~m}>6 \mathrm{~km}, 6 \mathrm{~km}<7,000 \mathrm{~m}$
4 b. 3 kg

1b. $40,000 \mathrm{~m}, 10,000 \mathrm{~m}$
$2 \mathrm{~b} .2 \mathrm{~kg}=2,000 \mathrm{~g}, 5,000 \mathrm{~g}>2 \mathrm{~kg}$, $5,000 \mathrm{~g}>2,000 \mathrm{~g}$
3 b . Jack is not correct. $4 \times 500 \mathrm{~g}=2,000 \mathrm{~g}$. $2,000 \mathrm{~g}$ is equivalentto $2 \mathrm{~kg} .2 \times £ 3=£ 6$ so 4 bunches of bananas would cost $£ 6.00$

Pink Part 1:

$5 \mathrm{a} .700 \mathrm{~m}=7.0 \mathrm{~km}$ corrected to $700 \mathrm{~m}=$ 0.7 km or $7,000 \mathrm{~m}=7.0 \mathrm{~km}$.
$2.7 \mathrm{~kg}=27,000 \mathrm{~g}$ corrected to $2.7 \mathrm{~kg}=$ $2,700 \mathrm{~g}$ or $27 \mathrm{~kg}=27,000 \mathrm{~g}$.
6a. True, True, False, False.
$7 \mathrm{a} .3 .5 \mathrm{~kg}<5,500 \mathrm{~g}, 31,000 \mathrm{~g}>27 \mathrm{~kg}$, $9.8 \mathrm{~km}>9,700 \mathrm{~m}, 4,200 \mathrm{~m}=4.2 \mathrm{~km}$.
8 a .700 g .

Part 2 and Extension:

4a. First row: 1.6 km
Second row: 4.3 km
Third row: 0.2 km
5a. Various possible answers, for example: $3,300 \mathrm{~m}>2,800 \mathrm{~m}, 2,800 \mathrm{~m}>2.5 \mathrm{~km}$, $2.5 \mathrm{~km}<3,300 \mathrm{~m}$
6 a . Nadia is correct. $1,500 \mathrm{~g}$ is equivalent to 1.5 kg .1 kg costs $£ 2.60$ so 0.5 kg would cost $£ 1.30 . £ 2.60+£ 1.30=£ 3.90$.

5b. $4,900 \mathrm{~m}=49 \mathrm{~km}$ corrected to $4,900 \mathrm{~m}=$ 4.9 km or $49,000=49 \mathrm{~km}$.
$20,200 \mathrm{~m}=2.0 \mathrm{~km}$ corrected to $20,200 \mathrm{~m}=$
20.2 km or $2,000 \mathrm{~m}=2.0 \mathrm{~km}$

6b. True, False, True, False.
$7 \mathrm{~b} .3 .4 \mathrm{~kg}>3,300 \mathrm{~g}, 9.9 \mathrm{~kg}=9,900 \mathrm{~g}$, $800 \mathrm{~m}>0.6 \mathrm{~km}, 6.7 \mathrm{~km}<7,600 \mathrm{~m}$
$8 \mathrm{~b} .5,300 \mathrm{~m}$.

4b. First row: 0.5 kg
Second row: 2.5 kg
Third row: 2.3 kg
5b. Various possible answers, for example: $3.9 \mathrm{~kg}>3.3 \mathrm{~kg}, 3.3 \mathrm{~kg}<3,500 \mathrm{~g}$,
$3,500<3.9 \mathrm{~kg}$.
6b. Ewan is not correct.
$3 \times 500 \mathrm{~g}=1,500 \mathrm{~g}$, which is equivalent to $1.5 \mathrm{~kg} .1 .5 \times £ 2.80=£ 4.20$.

Purple Part 1:

9 a. $3,500 \mathrm{~m}=3.05 \mathrm{~km}$ corrected to $3,500 \mathrm{~m}$ $=3.5 \mathrm{~km}$ or $3,050 \mathrm{~km}=3.05 \mathrm{~km}$.
$0.43 \mathrm{~kg}=4,300 \mathrm{~g}$ corrected to $0.43 \mathrm{~kg}=$ 430 g or $4.3 \mathrm{~kg}=4,300 \mathrm{~g}$.
10a. False, False, True, True.
$11 \mathrm{a} .6 .78 \mathrm{~kg}<9,850 \mathrm{~g}, 7,430 \mathrm{~m}>2.73 \mathrm{~km}$, $9,800 \mathrm{~m}>8.08 \mathrm{~km}, 260 \mathrm{~m}=0.26 \mathrm{~km}$.
12a. 0.11 km .

Part 2 and Extension:

7a. First row: 3.09 km
Second row: 4.85 km
Third row: 1.15 km
8a. Various possible answers, for example:
$4,500 \mathrm{~g}>4.05 \mathrm{~kg}, 4,500 \mathrm{~g}>4,320 \mathrm{~g}$, $4,320 \mathrm{~g}>4.05 \mathrm{~kg}$
9a. Ruby is not correct. 20 apples would weigh $20 \times 105 \mathrm{~g}=$ $2,100 \mathrm{~g}$, which is equivalent to 2.1 kg .2 kg of apples would cost $2 \times £ 1.60=£ 3.20$ so 2.1 kg would cost more than $£ 3.20$.

9b. $4,970 \mathrm{~m}=49.7 \mathrm{~km}$ corrected to $4,970 \mathrm{~m}$ $=4.97 \mathrm{~km}$ or $49,700 \mathrm{~m}=49.7 \mathrm{~km}$.
$30,300 \mathrm{~m}=33 \mathrm{~km}$ corrected to $30,300 \mathrm{~m}=$ 30.3 km or $33,000 \mathrm{~m}=33 \mathrm{~km}$.

10b. True, False, True, True.
$11 \mathrm{~b} .4 .42 \mathrm{~km}>3,320 \mathrm{~m}, 0.95 \mathrm{~km}=950 \mathrm{~m}$, $720 \mathrm{~g}>0.71 \mathrm{~kg}, 2.37 \mathrm{~kg}<5,670 \mathrm{~g}$.
12b. $3,700 \mathrm{~g}$.

7b. First row: 4.74 kg

Second row: 2.31 kg
Third row: 6.15 kg
8b. Various possible answers, for example:
$3.7 \mathrm{~kg}>3.07 \mathrm{~kg}, 3.7 \mathrm{~kg}>3,007 \mathrm{~g}, 3.07 \mathrm{~kg}>$ $3,007 \mathrm{~g}$
9b. Harrison is not correct.
10 pears would weigh $10 \times 252 \mathrm{~g}=2,520 \mathrm{~g}$, which is equivalent to 2.52 kg .2 .5 kg would cost $2.5 \times £ 1.90=£ 4.75$ so 2.52 kg would cost more than $£ 4.75$.

Tuesday

Green Part 1:

1a. multiply, $5,000 \mathrm{~mm}$; divide, 3L; multiply, $7,000 \mathrm{ml}$
2a.

$\mathbf{m m}$	\mathbf{m}
2,000	$\mathbf{2}$
4,000	$\mathbf{4}$
8,000	8
3,000	$\mathbf{3}$

3a. $6,000 \mathrm{~mm} ; 5,000 \mathrm{~mm} ; 3 \mathrm{~m} ; 2,000 \mathrm{~mm} ; 1 \mathrm{~m}$
4a.

Part 2 and Extension:

1a. $2,000 \mathrm{~mm}+3 \mathrm{~m}=5 \mathrm{~m}$
2 a . No, $5,000 \mathrm{ml} \div 1,000=5 \mathrm{~L}$. 5 L is less than 55L.

3a. No, Kit is incorrect because he has $6,000 \mathrm{ml}$ of water $(4,000 \mathrm{ml}+2,000 \mathrm{ml})$. Billy has $4 \mathrm{~L}(3 \mathrm{~L}+1 \mathrm{~L}) .4 \mathrm{~L} \times 1,000=4,000 \mathrm{ml}$ of water. $6,000 \mathrm{ml}$ is more than $4,000 \mathrm{ml}$.

1b. multiply, $9,000 \mathrm{ml}$; divide, 3 m ; divide, 8 L
2b.

$\mathbf{m l}$	\mathbf{L}
3,000	3
7,000	7
6,000	6
10,000	10

3b. $2,000 \mathrm{~mm} ; 3 \mathrm{~m} ; 5 \mathrm{~m} ; 8,000 \mathrm{~mm} ; 9,000 \mathrm{~mm}$
4b.

1b. $2 \mathrm{~L}+4,000 \mathrm{ml}=6 \mathrm{~L}$
2b. Yes, $6 \mathrm{~m} \times 1,000=6,000 \mathrm{~mm} .6,000 \mathrm{~mm}$ is greater than $5,000 \mathrm{~mm}$.
3b. Yes, Jess is correct because Phoebe has 7 L of water ($4 \mathrm{~L}+3 \mathrm{~L}$). Jess has $6,000 \mathrm{ml}$ $(5,000 \mathrm{ml}+1,000 \mathrm{ml}) \cdot 6,000 \mathrm{ml} \div 1,000=6 \mathrm{~L}$ of water. 6 L is less than 7 L .

Pink Part 1:

5a. multiply, 2,300mm; divide, 3.2L; multiply, $5,700 \mathrm{ml}$
6a.

$\frac{?}{1000}$	ml	L
$\frac{300}{1000}$	300	0.3
$\frac{900}{1000}$	900	0.9
$\frac{600}{1000}$	800	0.6

7a. $4.2 \mathrm{~m} ; 4,100 \mathrm{~mm} ; 4 \mathrm{~m} ; 400 \mathrm{~mm} ; 0.3 \mathrm{~m}$
8a.

$2 \frac{1}{2} \mathrm{~m}$
$1,4 \mathrm{~L}$
$2 \frac{1}{5} \mathrm{~m}$

Part 2 and Extension:

$4 \mathrm{a} \cdot 2,500 \mathrm{~mm}+0.3 \mathrm{~m}+1,500 \mathrm{~mm}=4.3 \mathrm{~m}$
5a. No, $\frac{50}{1000} \mathrm{~L}=50 \mathrm{ml}<0.5 \mathrm{~L}$.
$0.5 \mathrm{~L} \times 1,000=500 \mathrm{ml} .500 \mathrm{ml}$ is more than 50 ml .

6a. No, Jack is incorrect because he has $3,000 \mathrm{ml}(4,600 \mathrm{ml} \div 2$ and $2,300 \mathrm{ml}+$ 700 ml). Peter has $3,100 \mathrm{ml}(5.2 \mathrm{~L} \div 2$ and $2.6 \mathrm{~L}+500 \mathrm{ml}$). Peter has 100 ml of water more than Jack.

Purple Part 1:

9a. multiply, 2,340mm; divide, 4.01L; multiply, $5,770 \mathrm{ml}$ 10a.

$\frac{?}{1000}$	ml	L
$\frac{350}{1000}$	350	0.35
$\frac{540}{1000}$	590	0.59
$\frac{710}{1000}$	710	0.71

11a. $4.36 \mathrm{~m}, 4.26 \mathrm{~m}, 460 \mathrm{~mm}, 426 \mathrm{~mm}, 0.29 \mathrm{~m}$
12a.

5b. divide, 4.1 L ; multiply, $7,500 \mathrm{~mm}$; multiply, $9,400 \mathrm{ml}$
6b.

$\frac{?}{1000}$	ml	L
$\frac{200}{1000}$	200	0.2
$\frac{400}{1000}$	400	0.4
$\frac{800}{1000}$	800	0.8

7b. $0.5 \mathrm{~L} ; 750 \mathrm{ml} ; 7.5 \mathrm{~L} ; 8 \mathrm{~L} ; 8,800 \mathrm{ml}$
8b.

$4 \frac{1}{5} \mathrm{~L}$	
6.2 m	
$4,500 \mathrm{~mm}$	
$4,9,900 \mathrm{ml}$	

4b. $0.5 \mathrm{~L}+3,700 \mathrm{ml}+1,500 \mathrm{ml}=5.7 \mathrm{~L}$
5b. No, $\frac{900}{1000} \mathrm{~L}=900 \mathrm{ml}=0.9 \mathrm{~L}$.
$0.9 \mathrm{~L} \times 1,000=900 \mathrm{ml}$, so all are equal.
6b. Yes, Lily is correct because Brooke has $1,900 \mathrm{ml}(2,800 \mathrm{ml} \div 2$ and $1,400 \mathrm{ml}+$ 500 ml). Lily has $800 \mathrm{ml}(1.2 \mathrm{~L} \div 2$ and $0.6 \mathrm{~L}+$ 200 ml). Lily has $1,100 \mathrm{ml}$ of water less than Brooke.

9b. multiply, 4,180ml; divide, 7.04 m ; multiply, $9,490 \mathrm{ml}$
10b.

$\frac{?}{1090}$	ml	L
$\frac{750}{1000}$	750	0.75
$\frac{60}{1090}$	60	0.06
$\frac{950}{1000}$	950	0.95

$11 \mathrm{~b} .760 \mathrm{ml}, 0.86 \mathrm{~L}, 7.6 \mathrm{~L}, 8,610 \mathrm{ml}, 8.76 \mathrm{~L}$
12b.

Part 2 and Extension:

7 a. $5,000 \mathrm{~mm}+0.02 \mathrm{~m}+1 \frac{1}{4} \mathrm{~m}=6.27 \mathrm{~m}$
8 a . No, $0.06 \mathrm{~L} \times 1,000=60 \mathrm{ml}$.
$\frac{600}{1000} \mathrm{~L}=600 \mathrm{ml} .60 \mathrm{ml}$ is not greater than 600 ml .

9a. No, Logan is incorrect because he has
$3,500 \mathrm{ml}(5,500 \mathrm{ml} \div 2$ and $2,750 \mathrm{ml}+$
750 ml). Noah has $2,750 \mathrm{ml}$ (two thirds of 3L is 2 L and $2 \mathrm{~L}+750 \mathrm{ml}$). Logan has 750 ml of water more than Noah.

7b. $2 \frac{3}{4} \mathrm{~L}+1.75 \mathrm{~L}+1,250 \mathrm{ml}=5.75 \mathrm{~L}$
8 b. Yes, $0.15 \mathrm{~L} \times 1,000=150 \mathrm{ml} . \frac{15}{1000} \mathrm{~L}=$ 15 ml .150 ml is greater than 15 ml .

9b. Yes, Olivia is correct because Ava has $2,350 \mathrm{ml}$ ($6.3 \mathrm{~L} \div 3$ and $2.1 \mathrm{~L}+250 \mathrm{ml}$). Olivia has $2,350 \mathrm{ml}(3,800 \mathrm{ml} \div 2$ and $1,900 \mathrm{ml}+$ 450 ml). They each have $2,350 \mathrm{ml}$ of water in their buckets.

Wednesday

Green Part 1:

1a. 360 seconds $=6$ minutes;
1b. 21 days $=3$ weeks;
600 seconds $=10$ minutes
2a. False: 28 days > 3 weeks
35 days $=5$ weeks
3a. A
2b. False: 600 minutes $=10$ hours
3b. A
4a. 60 minutes, 2 hours, 180 minutes, 4
4b. 6 years, 60 months, 4 years, 36 months

Part 2 and Extension:

1a. 300 seconds >4 minutes
2a. No, Mia is incorrect. There are 7 days in 1 week. $70 \div 7=10$ so 70 days $=10$ weeks. $7 \times 7=49$ so 7 weeks $=49$ days.
3 a. Lee is the youngest at 84 months.

1b. 48 months < 5 years
2b. Yes, Zairah is correct. There are 60 seconds in 1 minute. $3 \times 60=180$ so there are 180 seconds in 3 minutes.
3b. Leticia has the longest nap at 240 minutes.

Pink Part 1:

5a. 132 minutes $=2$ hours 12 minutes;
90 minutes $=1$ hour 30 minutes;
188 minutes $=3$ hours 8 minutes
6a. False: 4 years 6 months $=54$ months
7a. A
8 a. 610 seconds, 10 minutes 20 seconds, 10 minutes 30 seconds, 650 seconds

5b. 100 days $=14$ weeks 2 days;
93 days $=13$ weeks 2 days;
85 days $=12$ weeks 1 day
6b. False: 330 seconds $=5$ minutes and 30 seconds
7b. A
8 b. 146 minutes, 1 hour 56 minutes, 1 hour 45 minutes, 85 minutes

Part 2 and Extension:

4a. 72 minutes $>3,780$ seconds $<3,900$ seconds
3,780 seconds < 72 minutes $>3,900$
seconds
3,900 seconds <72 minutes $>3,780$ seconds
3,900 seconds $>3,780$ seconds <72
minutes
5a. No, Joe is incorrect. There are 7 days in 1 week. $13 \times 7=91$ so 91 days $=13$ weeks. 80 days $=11$ weeks, 3 days
6a. Chloe makes her craft the quickest, in 1 hour and 55 minutes

Purple Part 1:

9 a. 3,600 seconds $=1$ hour; 1,800 seconds $=0.5$ hours; 5,400 seconds $=1.5$ hours;
2,700 seconds $=0.75$ hours
10a. True
11a. A
12a. 0.75 hours, 4,500 seconds, 98 minutes, 100 minutes, 6,060 seconds, 2.5 hours

Part 2 and Extension:

7a. Various possible answers: for example, 1.75 hours $=105$ minutes $<9,000$ seconds >2 hours
105 minutes $=1.75$ hours $<9,000$ seconds
>2 hours
9,000 seconds >1.75 hours $=105$ minutes
< 2 hours
2 hours >1.75 hours $=105$ minutes $<9,000$ seconds
8a. Yes, Ellie is correct. There are 52 weeks in 1 year and $4 \times 52=208$
9a. Ellis is going on the shortest holiday as he is only away for 10 days.

4b. 55 months <66 months $=5$ years 6 months
55 months <5 years 6 months $=66$ months
5b. No, Ravi is incorrect. There are 24 hours in 1 day therefore Lily is going to the beach in 1 day and 11 hours. $3 \times 24=72$ and $72+5=77$ so 3 days and 5 hours $=77$ hours.
6b. Aamina finishes the race last as she takes 270 seconds.

9b. 120 hours $=5$ days; 96 hours $=4$ days;
144 hours $=6$ days; 240 hours $=10$ days
10b. True
11b. C
12b. 60 months, 48 months, 156 weeks, 144 weeks, 2 years, 18 months

7b. Various possible answers: for example, 192 hours $=8$ days $>1,440$ minutes <7 days 8 days $=192$ hours $>1,440$ minutes <7 days 1,440 minutes <192 hours $=8$ days >7 days
7 days $>1,440$ minutes <192 hours $=8$ days
8b. Yes, Oscar is correct. There are 60 minutes in 1 hour. $3 \times 60=180$. There are 60 seconds per minute so $180 \times 60=$ 10,800
9b. Lexi has trained for the shortest time as 156 weeks $=3$ years .

Thursday

Green:

1. A. 266 ; B. 28 ; C. 2 ; D. 60
2. A. 28 days or 3 weeks; C. 98 days or 13 weeks; F. 960 minutes or 14 hours
3. Sophia $=25^{\text {th }}$ May; Clive $=2: 30$ pm

Pink:

4. A. 40 B. 5 ; C. 440 ; D. 365 , E. 20, F. 20
5. Various possible answers due to partitioning of units:
A. 2 years and 6 months or 36 months; D. 1 hour and 40 minutes or 110 minutes; F. 7 hours and 10 minutes or 6 hours and 70 minutes or 390 minutes
6.Kane $=25^{\text {th }}$ October; Rebecca $=8: 08 \mathrm{pm}$; Lee $=17^{\text {th }}$ September; Zac $=9: 30 \mathrm{am}$ Wednesday

Purple:

7. A. 225 ; B. 8784 ; C. 71 ; D. 15,120 ; E. 9,000 ; F. 502.5
8. Various possible answers due to partitioning of units: B. 120 hours and 360 minutes or 5.125 days; D. 480 minutes or 8 hours and 1200 seconds; $E .5$ hours and 1,530 seconds or 302.5 minutes
9. Cliff $=13^{\text {th }}$ August 01:30, Huma $=21: 11: 00$, Beth $=13^{\text {th }}$ March 02:31, Randol $=12: 56: 54$
